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1 Introduction

Instanton effects are one of the key ingredients in understanding the mathematical struc-

tures of string theory at the non-perturbative level. They dominate the dynamics of the

theory at strong coupling and play a prominent role in the non-perturbative dualities which

are vital for exploring the dynamics in this regime. Moreover, there is evidence that these

effects are capable of resolving the singularities appearing in the perturbative analysis of

the string theory moduli space [1].

An important laboratory, where such effects can be studied in detail, is the compact-

ification of Type II strings on a Calabi-Yau threefold (CY). In this case the low-energy
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effective action (LEEA) has N = 2 supersymmetry and receives space-time instanton cor-

rections from Euclidean D-branes and NS5-branes wrapping supersymmetric cycles of the

internal space [2]. Supersymmetry then dictates that the LEEA is characterized by two

manifolds: a special Kähler (SK) space K determining its vector multiplet sector, and

a quaternion-Kähler (QK) space M underlying its hypermultiplet sector. For Type IIA

strings compactified on a CY X and Type IIB strings on Y , K is given by the Kähler

moduli space KK(X) and the moduli space of complex structures KC(Y ), respectively:

Type IIA/X Type IIB/Y

moduli
space KK(X) ×MC(X) KC(Y ) ×MK(Y )

At string tree-level, MC(X) and MK(Y ) can be obtained from KC(X) and KK(Y ) via

the c-map [3, 4]. It thereby turns out that the four-dimensional dilaton eφ/2 ∝ g(10),

proportional to the ten-dimensional string coupling constant, enters into M. Thus both

hypermultiplet sectors are subject to perturbative and non-perturbative string corrections.

A striking feature of these moduli spaces is their conjectured relation via mirror sym-

metry [5]. In its “generalized” or “non-perturbative” formulation, this duality states that

the moduli spaces arising from the compactification of Type IIA strings on X and Type IIB

strings on X̃ (mirror to X) are actually identical. On the vector multiplet side this amounts

to the well-supported classical mirror symmetry [6], which equates the complex structure

moduli space of X with the complexified Kähler moduli space of X̃, KC(X) = KK(X̃).

Generalized mirror symmetry further implies the identification

MC(X) = MK(X̃) , (1.1)

which is supposed to hold upon including the non-perturbative gs-corrections originating

from D- and NS5-brane instantons [2, 7]. In mathematical terms (1.1) translates into an

equivalence between elements of the derived category D(X̃) of coherent sheaves (related

to MK(X̃)) and elements in the derived Fukaya category F(X) of SLAG submanifolds

(related to MC(X)) (see [8] for an introduction). In particular, it encompasses the homo-

logical mirror symmetry conjecture [9].

At the level of the LEEA, mirror symmetry is realized via the generalized (or non-

perturbative) mirror map which relates the physical fields of the Type IIA compactification,

parameterizing MC(X), to the physical fields of the Type IIB compactification, providing

coordinates on MK(X̃). The classical limit of this map has been obtained in [10]. Since the

moduli spaces receive quantum corrections from both worldsheet and D-brane instantons,

it is expected, however, that the full generalized mirror map will also be subject to such

corrections. The main result of this paper, which can be found in eq. (5.2), is the explicit

construction of this map, including the quantum corrections from worldsheet, D(−1), and

D1-instantons.

The derivation of the generalized mirror map requires the detailed knowledge of the

perturbative and non-perturbative corrections to M. For the compactifications at hand

these are given by perturbative worldsheet and gs-corrections, contributions from D2-branes

wrapping the SLAG three-cycles in Type IIA mirror to odd branes (D(−1), D1, D3, D5)
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wrapping complex cycles of X̃ in Type IIB, and NS5-branes. A fruitful route for de-

termining these corrections explicitly is via a chain of non-perturbative symmetries and

dualities [11, 12]. A key role is played by the SL(2, Z) duality of the Type IIB string [10]

and the symplectic covariance of the Type IIA theory [13], which are believed to hold also

non-perturbatively.1 At the classical level, the actions of these dualities on the physical

fields parameterizing the moduli spaces can be deduced from the dimensional reduction of

the ten-dimensional supergravity action. At the quantum level, we then define the “physi-

cal fields” coordinatizing M by the requirement that they obey the classical transformation

laws with respect to SL(2, Z) on the Type IIB side and the symplectic group on the Type

IIA side, respectively. Thus, by definition, the action of these transformations on M does

not receive quantum corrections.

Following this route, [15] obtained exact results for the D(−1) and D1-instanton cor-

rections by implementing the SL(2, Z)-invariance of the Type IIB string. (For a recent

rederivation of some of these results from a topological string perspective see [16].) Us-

ing the classical limit of the mirror map together with the assumption that the instanton

numbers on the Type IIA and Type IIB side agree, this result also yields the mirror sym-

metric “A-type” D2-instanton contributions [11, 12, 17]. Subsequently, these corrections

have been generalized to include all D2-instantons [18, 19] and there are also partial results

on NS5-brane instantons [20, 21]. Determining the exact contribution of the latter will,

however, require detailed knowledge of the generalized mirror map, which provides a strong

motivation for our investigation.

Our work heavily draws on twistor space description of QK spaces [22, 23]. This ap-

proach encodes the complicated quaternion-Kähler geometry of M in a set of simple holo-

morphic functions appearing as transition functions between locally flat Darboux patches

of the twistor space Z of M. These transition functions depend on the complex coordinates

on the twistor space, the so-called twistor lines, and play a similar role as the holomorphic

prepotential for the special Kähler spaces. In this framework, the problem of determining

the instanton corrections to M is equivalent to finding appropriate holomorphic functions

which respect the non-perturbative symmetries of the theory.

The strategy for constructing the generalized mirror map is then to lift the non-

perturbative duality transformations from M to Z, where they induce transformations

of the twistor lines. The twistor lines then transform in a particular representation of the

duality group. At the classical level, the actions of SL(2,Z) S-duality and electric-magnetic

rotations have already been obtained in [18]. We will show that, locally, these classical

transformations remain uncorrected upon including D-instanton contributions. Imposing

compatibility between the transformation laws of the physical fields and the twistor lines

then allows us to determine the instanton corrections to the generalized mirror map. At

the classical level, this computation has already been carried out in [18] recovering the

result of [10].

Motivated by the observation that D1-instantons play an essential role in smoothing

the conifold singularity appearing in the perturbative hypermultiplet metric [1, 17], we also

1For a recent analysis of the interplay between these symmetries and wall-crossing phenomena see [14].
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investigate the effect of the D-instanton corrections on the perturbative (1-loop) singularity

of M [24, 25]. In this context, we observe that the four-dimensional string coupling (defined

via the contact potential, see eq. (2.2) below) does not become strongly coupled, while the

moduli space metric contains a curvature singularity at a finite value of the ten-dimensional

string coupling. The latter is not resolved by the instanton corrections considered here, and

we conjecture that the resolution of this singularity will require the inclusion of NS5-branes.

The rest of the paper is organized as follows. In sections 2 and 3 we review the

general twistor space construction of toric quaternion-Kähler manifolds and its application

to the perturbative hypermultiplet moduli spaces arising in Type IIA and Type IIB string

compactifications, respectively. Section 4 contains our new description of the instanton

corrected Type IIB twistor space. In appendices A and B we show that this formulation

is gauge-equivalent to the Type IIA description [18], establishing mirror symmetry at the

level of the twistor spaces. This result is used to derive the SL(2, Z)-transformation of

the instanton corrections to the twistor lines in the Type IIB framework and the non-

perturbative mirror map in section 5. Section 6 contains our analysis of the perturbative

singularities of M. A brief discussion of our results together with an outlook is given in

section 7. Finally, the technical details about the SL(2, Z)-transformations of the Type

IIB twistor lines can be found in appendix C.

2 Twistor description of toric quaternion-Kähler spaces

In this section we summarize the twistor space description of (toric) QK manifolds recently

developed in [23]. It is based on the Lebrun-Salamon theorem [23, 26, 27], which guarantees

that the metric on M can be recovered from the complex contact structure2 on its twistor

space Z. Moving from M to Z brings the advantage that all the geometrical data can be

encoded in a set of holomorphic transition functions which relate the contact structure in

different patches of Z. These functions provide an invaluable tool when studying defor-

mations of QK spaces. In the following, we will review these geometric objects and their

relation to the metric on M, which will be central in our discussion of instanton corrections

to HM moduli spaces.

A QK manifold M is a real 4d-dimensional Riemannian manifold with holonomy con-

tained in USp(d) × SU(2). Locally it admits a triplet of almost complex structures which

satisfy the algebra of unit quaternions. The holonomy constraint implies that M carries

a canonical SU(2)-connection ~p with components p− = (p+)∗, p3 = (p3)
∗, which is given

by the SU(2)-part of the Levi-Civita connection. We call M toric, if it admits d + 1

commuting isometries.

The twistor space Z is a CP 1-bundle over M, i.e., Z = M × CP 1 locally, and we

use local coordinates xµ on M and the complex coordinate z on CP 1, respectively. Z is

Kähler-Einstein and its connection is given by ~p. Furthermore, it carries a real structure

τ which acts as the antipodal map on CP 1 and leaves the coordinates of M invariant,

τ : {xµ, z} 7→ {xµ,−z̄−1}.
2For a general introduction to contact geometry, see [28].
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The key ingredient in the construction is the complex contact structure of Z. On the

open covering Ûi of Z, the latter can be represented by a set of holomorphic one-forms

X [i], such that the holomorphic top form

κ[i] = X [i] ∧ (dX [i])d 6= 0 (2.1)

is nowhere vanishing. On each patch,

X [i] = 2eΦ[i]
Dz

z
, (2.2)

is proportional to the canonical (1, 0) form Dz = dz + p+ − ip3 z + p− z2 and subject to

the reality constraint τ(X [i]) = −X [̄ı] where we assume that τ maps the patch Ûi onto

Ûı̄, which can always be achieved through a refinement of the covering. The “contact

potential” Φ[i] ≡ Φ[i](x
µ, z) is a function on Ûi ⊂ Z. It is holomorphic along the CP 1 fiber,

defined up to an additive holomorphic function on Ûi, and chosen such that the right-hand

side of (2.2) is a holomorphic (i.e. ∂̄-closed) one-form. Furthermore, the reality constraint

on X [i] implies that τ(Φ[i]) = Φ[̄ı].

By a variation of Darboux’s theorem, for an appropriate open covering, in each patch

Ûi one can find complex coordinates ξΛ[i], ξ̃
[i]
Λ , α

[i] (Λ = 0, . . . , d− 1) such that the X [i] takes

the canonical form

X [i] ≡ dα[i] + ξΛ[i] dξ̃
[i]
Λ . (2.3)

We choose these coordinates to satisfy

τ(ξΛ[i]) = ξΛ[̄ı] , τ(ξ̃
[i]
Λ ) = −ξ̃ [̄ı]Λ , τ(α[i]) = −α[̄ı] . (2.4)

The global structure of Z can then be encoded in a set of holomorphic transition functions

relating the sets of coordinates on the overlap of two patches Ûi ∩ Ûj, thereby preserv-

ing (2.3). Together with the d + 1 additional real numbers cΛ, cα, called the “anomalous

dimensions”, these transition functions contain all the geometric information of the twistor

space and the corresponding QK base.

Extracting the metric on M requires the construction of the twistor lines of Z by

expressing the complex coordinates ξΛ[i], ξ̃
[i]
Λ , α

[i] in terms of the coordinates {xµ, z}. For a

generic QK metric, where the transition functions depend on all coordinates ξΛ[i], ξ̃
[i]
Λ , α

[i],

this is fairly difficult. For the purpose of this paper it suffices, however, to consider the

case where M is toric. In this case the moment maps associated to the d+1 isometries [29]

provide independent global O(2) sections on Z, which can be taken to be the complex

coordinates ξΛ[i] and the unit function. The resulting twistor lines ξΛ[i] are globally defined

and take the form

ξΛ ≡ ξΛ[i] = Y Λz−1 +AΛ − Ȳ Λz (2.5)

on all patches Ûi. In fact, one can choose Y 0 ≡ R to be real by fixing the U(1)-action

corresponding to phase rotations of z. Together with the d+ 1 additional real coordinates

{BΛ, Bα} introduced in (2.9), R, Y a, Ȳ a, AΛ provide a convenient coordinate system on M.

– 5 –
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As a consequence of (2.5), the complex coordinates ξΛ, ξ̃Λ and α must now be related

by transition functions which preserve ξΛ and the unit function. The general form of such

contact transformations is given by

ξ̃
[i]
Λ = ξ̃

[j]
Λ − ∂ξΛH [ij] , α[i] = α[j] −H [ij] + ξΛ∂ξΛH [ij] , (2.6)

where the transition functions H [ij](ξ) are independent of ξ̃
[i]
Λ , α

[i]. The reality condi-

tion (2.4) and the consistency conditions appearing on the overlap of three patches fur-

thermore imply the additional constraints

τ(H [ij]) = −H [̄ı̄] , H [ij] +H [jk] = H [ik] . (2.7)

Besides, it is important to note that the transition functions H [ij] do not specify the twistor

space uniquely, but are subject to the gauge equivalence

H [ij] 7→ H [ij] + T [i] − T [j] , (2.8)

where T [i](ξΛ) are holomorphic functions regular in the patch Ûi. Essentially they capture

the possibility to perform a local change of coordinates in Ûi, which leaves the contact

form (2.3) invariant. We shall often abuse notation and define H [ij] away from the overlap

Ûi ∩ Ûj (in particular when the two patches do not intersect) using analytic continuation

and the second equation in (2.7) to interpolate from Ûi to Ûj. Ambiguities in the choice of

path can be dealt with on a case by case basis.

The gluing conditions (2.6) together with the requirement that the contact form takes

the form (2.2) are sufficient to determine the twistor lines ξ̃
[i]
Λ , α

[i] for the toric case [23]:3

ξ̃
[i]
Λ =

i

2
BΛ +

1

2

∑

j

∮

Cj

dz′

2πiz′
z′ + z

z′ − z
∂ξΛH [ij](ξ(z′)) + cΛ log z , (2.9)

α[i] =
i

2
Bα +

1

2

∑

j

∮

Cj

dz′

2πiz′
z′ + z

z′ − z

[

H − ξΛ∂ξΛH
][ij]

+ cα log z + cΛ
(

Y Λz−1 + Ȳ Λz
)

.

Here, z ∈ Ui, with Ui denoting the projection of Ûi to CP 1, and Cj is a contour surrounding

Uj . The “integration constants” BΛ, Bα provide the extra d+1 coordinates on M mentioned

above. Note that the twistor lines are not regular in the patches around z = 0 and z = ∞
but may contain singular terms. These terms are weighted by the anomalous dimensions

cΛ, cα which control the singular behavior at these points. These are the only singularities

admissible by regular metrics. Moreover, the contact potential turns out to be independent

of z and the same in all patches. Explicitly it is given by

eΦ =
1

4

∑

j

∮

Cj

dz′

2πiz′
(

z′−1Y Λ − z′Ȳ Λ
)

∂ξΛH [ij](ξ(z′)) +
1

2

(

cΛA
Λ + cα

)

. (2.10)

Note that due to consistency conditions (2.7), the index i of the transition functions

in (2.9), (2.10) can be replaced by any other patch index without affecting the result.

3Formulas for the twistor lines arising from an infinitesimal deformation away from the toric case have

been obtained in [23].

– 6 –



J
H
E
P
0
9
(
2
0
0
9
)
1
0
8

Given the twistor lines (2.5) and (2.9), the QK metric on M can be obtained using the

general formalism [23], which considerably simplifies for the toric case. This formalism uti-

lizes the Laurent expansion of the twistor lines in the patch Û+ around z = 0. Substituting

this expansion into the contact one-form (2.3) and comparing to (2.2) allows to determine

the SU(2) connection ~p and the contact potential in terms of the Laurent coefficients of

this expansion. The SU(2) connection then gives the triplet of quaternionic forms ~ωM, and

in particular

ωM,3 = dp3 + 2i p+ ∧ p− . (2.11)

Upon determining the almost complex structure J3, the metric then follows from gM(J3X,Y)

= ωM,3(X,Y ). The former can be specified through a basis of local one-forms on M of

Dolbeault type (1,0) with respect to J3. Let us denote by ξ̃
[+]
Λ,0 and α

[+]
0 the constant terms

in the Laurent expansion of ξ̃
[+]
Λ and α[+], respectively. Then by expanding the holomorphic

one-forms dξΛ,dξ̃
[+]
Λ , and dα[+] around z = 0 and projecting the result along the base M,

it can be shown that a suitable basis is given by4

Πa = d (Y a/R) , Π̃Λ = dξ̃
[+]
Λ,0 + cΛd logR, Π̃α = −dα

[+]
0 + cΛdAΛ − cαd logR, (2.12)

where a runs over 1, . . . , d − 1. These one-forms will play a central role in our discussion

of the regularity of the metric on M in section 6. In this context, it is often convenient

to trade the coordinate R for the variable eΦ. As we shall see below, this is natural

for the hypermultiplet moduli space, since the contact potential eΦ is identified with the

four-dimensional dilaton eφ.

3 Twistor description of perturbative HM moduli spaces

We now review the twistor space description of the perturbative hypermultiplet moduli

spaces arising from compactifying Type II string theory on a CY threefold. This will

provide our starting point for determining the instanton corrections to the classical mirror

map in section 5. Owed to the gauge-invariance of the p-forms appearing in the original

ten-dimensional action before compactification, the perturbative hypermultiplet moduli

spaces admit a Heisenberg group of isometries and therefore fall into the class of toric QK

manifolds discussed in the previous section.

3.1 Type IIA compactified on a CY threefold X

The hypermultiplet moduli space MC(X) in Type IIA string theory compactified on a

CY threefold X is a QK manifold of quaternionic dimension d = h2,1(X) + 1 [3, 4, 30].

It describes the dynamics of the complex structure moduli XΛ =
∫

γΛ Ω, FΛ =
∫

γΛ
Ω, the

RR scalars ζΛ, ζ̃Λ originating as similar integrals of the RR 3-form, the four-dimensional

dilaton eφ = 1/g2
(4) and the Neveu-Schwarz (NS) axion σ, dual to the NS two-form B in four

dimensions. Here, {γΛ, γΛ} represent a symplectic basis of A- and B-cycles in H3(X,Z)

4Up to overall factors, these correspond to the (1, 0)-forms Πa, Π̃I introduced in [23], which are further

simplified by utilizing that p+ itself is of Dolbeault-type (1, 0).

– 7 –
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with intersection product 〈γΛ, γΣ〉 = δΛΣ. The sets {XΛ, FΛ(X)} and {ζΛ, ζ̃Λ} transform as

symplectic vectors with respect to electric-magnetic duality Sp(2d, Z). The XΛ provide a

set of homogeneous coordinates on the space of complex structure deformations KC(X), and

(away from the vanishing locus of X0) may be traded for the inhomogeneous coordinates

za = Xa/X0.

At string tree level, MC(X) can be obtained from the special Kähler space KC(X)

(describing the vector multiplet moduli space of Type IIB strings compactified on the same

CY X) by the c-map [3, 4]. The latter space is completely characterized by the prepotential

F (XΛ), a homogeneous function of degree two of the A-type periods XΛ, such that the

B-type periods are given by FΛ = ∂F/∂XΛ. Therefore, the same is true for the tree level

HM moduli space. At one-loop, the metric on MC(X) receives a correction proportional to

the Euler class χX = 2(h1,1(X)−h2,1(X)). Based on the string theory amplitudes [31, 32],

the one-loop corrected QK metric was calculated in [24, 33]. It is believed to be the correct

metric on MC(X) to all orders in perturbation theory [23–25, 32, 33].

The twistor space formulation of MC(X) was worked out in [23]. As illustrated in the

left diagram of figure 2, it utilizes two patches Û+, Û− which project to open disks centered

around z = 0 and z = ∞ on CP 1, and a third patch Û0 which projects to the rest of CP 1.

The transition functions between these patches and the anomalous dimensions are given by

H [0+] = − i

2
F (ξΛ) , H [0−] = − i

2
F̄ (ξΛ) , cα =

χX

96π
, (3.1)

with cΛ = 0. The non-vanishing cα incorporates the one-loop correction.

The twistor lines arising from (3.1) are readily computed from (2.9). Motivated by

symplectic invariance, it is convenient to express the twistor line α[i] in terms of

α
[i]
A ≡ 4iα[i] + 2iξ̃

[i]
Λ ξ

Λ , (3.2)

so that the symplectic form (2.3) becomes

X [i] =
1

4i
dα

[i]
A +

1

2

(

ξΛdξ̃
[i]
Λ − ξ̃

[i]
Λ dξΛ

)

. (3.3)

The twistor lines in the patch Û0 resulting from (3.1) are then given by [23, 34]

ξΛ = ζΛ + R
(

z−1zΛ − z z̄Λ
)

,

−2iξ̃
[0]
Λ = ζ̃Λ + R

(

z−1FΛ(z) − z F̄Λ(z̄)
)

,

α
[0]
A = σ + R

(

z−1W (z) − z W̄ (z̄)
)

+ iχX

24π log z .

(3.4)

Here we set

W (z) ≡ FΛ(z)ζΛ − zΛζ̃Λ , (3.5)

and used the relation between the generic coordinates Y a, AΛ, BΛ, Bα introduced in the

previous section and the physical Type IIA fields

ζΛ = AΛ , ζ̃Λ = BΛ +AΣℜFΛΣ(z) , σ = −2Bα −AΛBΛ , Y a = R za . (3.6)

– 8 –
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The contact potential resulting from (3.1) is given by

eΦpert =
R2

4
K(z, z̄) +

χX

192π
, (3.7)

where K(z, z̄) ≡ −2ℑ(z̄ΛFΛ). This Type IIA twistor space formulation is adapted to the

symplectic covariance of the theory. Indeed, {ξΛ,−2iξ̃
[0]
Λ } transforms as a symplectic vector

while α
[0]
A and eΦpert are symplectic invariants. Thus the contact form (3.3) is also invariant,

making the symplectic covariance manifest. This completes the twistor description of the

perturbative Type IIA HM moduli space.

3.2 Type IIB compactified on a CY threefold Y

The QK manifold MK(Y ) arising from compactifying Type IIB string theory on a CY

threefold Y has quaternionic dimension d = h1,1(Y ) + 1. It describes the dynamics of the

Kähler moduli za ≡ ba + ita =
∫

γa J , the RR scalars c0, ca, ca, c0 obtained by integrating

appropriate combinations of RR forms along even dimensional cycles, the four-dimensional

dilaton eφ and the NS axion ψ. Here J ≡ B + iJ = zaωa is the complexified Kähler

form on Y . Furthermore, γa, a = 1, . . . , h1,1(Y ), form a basis of 2-cycles (Poincaré dual to

4-forms ωa), γa a basis of 4-cycles (Poincaré dual to 2-forms ωa), and κabc =
∫

Y ωaωbωc =

〈γa, γb, γc〉 is the triple intersection product in H4(Y,Z). In the large volume limit, the

four-dimensional dilaton φ is related to the ten-dimensional string coupling g(10) via eφ =
1
2 V (ta)/(g(10))

2, where V (ta) = 1
6

∫

Y J ∧ J ∧ J = 1
6 κabct

atbtc is the volume of Y in string

units. The ten-dimensional coupling τ2 ≡ 1/g(10) and the RR axion τ1 ≡ c0 can be combined

into the ten-dimensional axio-dilaton field τ = τ1 + iτ2.

At string tree level, the metric on MK(Y ) can be obtained from the special Kähler

space KK(Y ) via the c-map and thus is determined by the prepotential F (XΛ). The latter

receives world-sheet instanton corrections which can conveniently be found via the classical

mirror map [5, 6]. Its large volume expansion takes the form

F (XΛ) = −κabc
XaXbXc

6X0
+ χY

ζ(3)(X0)2

2(2πi)3
− (X0)2

(2πi)3

∑

γ̂+

n(0)
qa

Li3

(

e2πiqaXa/X0
)

, (3.8)

where γ̂ denotes the set of charges {qa} and its subset γ̂+ corresponds to effective homology

classes qaγ
a ∈ H+

2 (Y ) (i.e., qa ≥ 0 for all a, not all of them vanishing simultaneously).

Furthermore, n
(0)
qa is the genus zero BPS invariant in the homology class qaγ

a, Lis(x) =
∑∞

m=1m
−sxm is the polylogarithm function, and χY is the Euler number of Y . Note that

the last two terms in (3.8) may be combined by including the zero class qa = 0 into the sum

and setting n
(0)
0 = −χY /2. Similarly to the Type IIA case, the c-map metric on MK(Y )

receives a one-loop correction proportional to the Euler class χY .

Classically, i.e., at string tree-level and leading order in the α′ expansion, MK(Y )

admits an isometry group SL(2, R), acting on the physical fields as [10, 32]

τ 7→ aτ + b

cτ + d
, ta 7→ ta|cτ + d| , ca 7→ ca ,

(

ca

ba

)

7→
(

a b

c d

)(

ca

ba

)

,

(

c0
ψ

)

7→
(

d −c
−b a

)(

c0
ψ

)

, (3.9)
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with ad − bc = 1, which is inherited from the SL(2, R) invariance of the ten-dimensional

Type IIB supergravity action. The α′- and gs-corrections break this symmetry to the

discrete group SL(2, Z), which is expected to be a symmetry of the full quantum theory.

The twistor space Z of MK(Y ) has the same patch structure as its Type IIA coun-

terpart, cf. figure 1. Provided that Y = X̃ is the mirror CY of X, it also employs the

same transition functions (3.1). Thus, also the twistor lines underlying the perturbative

MK(X̃) and MC(X) are identical. Using the large volume expansion (3.8) and identifying

R = τ2/2 (as will become clear in (3.15) below), the contact potential (3.7) has the large

volume expansion

eΦpert =
τ2
2

2
V (ta) − χY ζ(3)

8(2π)3
τ2
2 + eΦws − χY

192π
, (3.10)

where

eΦws =
τ2
2

4(2π)3

∑

γ̂+

n(0)
qa

ℜ
[

Li3
(

e2πiqaza)

+ 2πqat
a Li2

(

e2πiqaza)]

(3.11)

is the world-sheet instanton contribution. In the large volume limit, eΦpert coincides with

the four-dimensional dilaton φ, and may in fact be adopted as its definition in the quan-

tum regime.

The classical SL(2, R)-invariance (3.9) can be lifted to the twistor space. In this

context, it is useful to adapt the twistor line α[i] to the SL(2, R) symmetry and work with

αB = − i

4
αA +

1

2
ξ̃Λξ

Λ = α+ ξ̃Λξ
Λ . (3.12)

Then the SL(2, R) action on the complex coordinates on the patch Û0 takes the form [18]

ξ0 7→ aξ0 + b

cξ0 + d
, ξa 7→ ξa

cξ0 + d
, ξ̃a 7→ ξ̃a +

i c

4(cξ0 + d)
κabcξ

bξc ,

ξ̃0 7→ (cξ0 + d)ξ̃0 − c αB + cξaξ̃a +
ic2

12

κabcξ
aξbξc

cξ0 + d
,

αB 7→ αB

cξ0 + d
+

ic

12

κabcξ
aξbξc

(cξ0 + d)2
.

(3.13)

Under the action (3.13), the complex contact one-form transforms by an overall holomor-

phic factor X [i] → X [i]/(cξ0 + d) so that the complex contact structure remains invariant.

The holomorphic contact action (3.13) on Z decomposes into the isometric action (3.9)

on MK(Y ) and a SU(2) rotation on the fiber. The latter is given by the following trans-

formation of the fiber coordinate z:

z 7→ cτ2 + z(cτ1 + d) + z|cτ + d|
(cτ1 + d) + |cτ + d| − zcτ2

. (3.14)

The SL(2, R) transformation of the complex coordinates ξΛ, ξ̃
[0]
Λ , α

[0]
B , given by eq. (3.13),

should be consistent with the transformation of the (classical part of the) twistor lines (3.4)

induced by the transformation laws (3.9) and (3.14). This condition allows to determine

– 10 –
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the classical relation between the physical Type IIA fields (R, za, ζΛ, ζ̃Λ, σ) and their Type

IIB counterparts (τ, ba, ta, ca, ca, c0, ψ) [18]

R =
1

2
τ2 , Y a =

1

2
τ2 z

a , ζ0 = τ1 , ζa = −(ca − τ1b
a) ,

ζ̃a = ca +
1

2
κabc b

b(cc − τ1b
c) , ζ̃0 = c0 −

1

6
κabc b

abb(cc − τ1b
c) ,

σ = −2

(

ψ +
1

2
τ1c0

)

+ ca(c
a − τ1b

a) − 1

6
κabc b

acb(cc − τ1b
c) .

(3.15)

This relation constitutes the classical limit of the generalized mirror map and agrees with

the identification found via the dimensional reduction of the classical ten-dimensional Type

IIB supergravity action on Y [10, 32]. The explicit construction of the quantum version

of this map, including the perturbative as well as the worldsheet, D(−1) and D1-instanton

corrections, will be the subject of section 5.

4 Instanton corrected Type IIB HM moduli space

We now proceed by dressing up the perturbative Type IIB twistor space description of

the last subsection by including D(−1) and D1-instanton corrections. In this case MK(Y )

still possesses d+ 1 commuting isometries5 and thus falls into the class of toric QK spaces

discussed in section 2. The corresponding instanton corrections were found by carrying out

an SL(2, Z) completion of the so-called “tensor potential” [35], which, up to the scale factor,

corresponds to the contact potential (2.10) in the twistor construction. Here we provide

the complete description of the instanton corrected twistor space including the transition

functions and the twistor lines. The gauge equivalence between this novel formulation

and the Type IIA twistor space description [18] is established in appendix A with more

computational details relegated to appendix B.

Adapting the results [15], the instanton corrected Type IIB contact potential is ex-

pressed in terms of a generalized Eisenstein series

eΦIIB =
τ2
2

2
V (ta) +

√
τ2

8(2π)3

∑

qa≥0

n(0)
qa

∑

m,n

′ τ
3/2
2

|mτ + n|3 (1 + 2π|mτ + n|qata) e−Sm,n,qa . (4.1)

Here the prime indicates that the (m,n)-sum excludes (0, 0). Furthermore,

Sm,n,qa = 2πqa(|mτ + n|ta − imca − inba) (4.2)

is the classical action of a (p, q)-string (or rather (m,n)-string) wrapped on the 2-cycle

qaγ
a ∈ H2(Y,Z) and the n

(0)
qa are the BPS invariants introduced in (3.8). The contribution

of the D(−1)-instantons is recovered as the (qa=0)-sector of the sum. Observe that the

contact potential is actually independent of the RR fields ca, c0 and the NS axion ψ. With

respect to the SL(2, Z)-transformations (3.9) it transforms as a modular form eΦIIB 7→
eΦIIB/|cτ + d|.

5These are broken once D3, D5 and NS5-brane corrections are included.
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Figure 1. Transition from the perturbative to the instanton corrected Type IIB twistor space.
The corrections are encoded in the poles zm,n

± located in the new patches UR±
. This should be

compared to the gauge-equivalent Type IIA twistor space shown in figure 2, which encodes the
instanton corrections in two BPS rays along the imaginary axis.

The projective superspace description [11] suggests that the instanton terms in (4.1)

can be captured by the holomorphic function6

GIIB(ξ) = − i

(2π)3

∑

qa≥0

n(0)
qa

∑

n∈Z

m>0

e−2πimqaξa

m2(mξ0 + n)
, (4.3)

with ξΛ(z) given by (3.4). This function has a dense set of poles on the real axis

zm,n
± =

mτ1 + n∓ |mτ + n|
mτ2

, zm,n
+ zm,n

− = −1, (4.4)

corresponding to the zeros of mξ0 + n expressed in terms of Type IIB fields using (3.15)

(see (4.6) below). For m > 0, the poles satisfy zm,n
+ < 0 and zm,n

− > 0, respectively. Each

pole captures the contribution of a particular (m,n)-instanton configuration. This can

easily be seen by noting that the residue of GIIB at zm,n
± gives rise to exponential terms

containing the corresponding instanton action. The “off-shell” GIIB does not transform as

a modular form under SL(2, Z), however.

The inclusion of the instanton corrections in the twistor space description is then

depicted in figure 1. The CP 1 is covered by six patches: the two (classical) patches U±

surround the north and south poles, two patches UR∓ encircle the negative and positive

real axis and contain all poles zm,n
± , and the remaining two patches U0B

, U0′B
cover the

6Here and in the following, for qa = 0 the sum over n is defined by first summing the contributions of n

and −n which leads to the asymptotics ∼ n−2.
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upper and lower half-planes of the z-plane, respectively.7 The transition functions on the

overlaps including U0B
are

H [0B+] = − i

2
F (ξΛ) , H [0B−] = − i

2
F̄ (ξΛ) , (4.5)

H [0BR−] = − i

2
GIIB(ξΛ) , H [0BR+] = − i

2
ḠIIB(ξΛ) ,

The ones on the overlap with U0′B
are given by the same expressions and follow from

replacing 0B 7→ 0′
B in (4.5). The anomalous dimensions cΛ, cα vanish identically since

the perturbative one-loop contribution cα, eq. (3.1), is now incorporated as a part of the

(qa = 0)-sector of the sum (4.3). (An explanation of how this works can be found in

appendix A.2.) This data completely specifies the twistor space underlying the Type IIB

HM moduli space.

Our next task is to compute the Type IIB twistor lines, including the instanton cor-

rections, by expressing ξΛ, ξ̃Λ, αB in terms of the physical Type IIB fields and the fiber

coordinate z. The twistor line ξΛ can be obtained from (2.5) by first going to the Type

IIA variables via (3.6) and subsequently applying the mirror map (3.15)

ξ0 = τ1 +
τ2
2

(

z−1 − z
)

, ξa = − (ca − τ1b
a) +

τ2
2

(

za z−1 − z̄a z
)

. (4.6)

The off-shell formulation [11, 17] thereby guarantees, that the relation between the physical

fields entering into ξΛ does not receive quantum corrections from D(−1) and D1-instantons.

As a crosscheck, one can also compute the contact potential (2.10) from the transition

functions (4.5) with ξΛ given above and verify that this indeed reproduces (4.1). This

provides an independent derivation of this result using twistor techniques.

The construction of the twistor lines ξ̃Λ and αB proceeds by substituting the transi-

tion functions (4.5) (depending on (4.6)) into (2.9). A straightforward, although tedious,

7Strictly speaking, this description is not satisfactory because the poles are dense on the real axis and,

in particular, accumulate near z = 0. To make the construction rigorous, one should cut off the sum over

m, n in (4.3) to m ≤ M, |n| ≤ N . This defines a regularized twistor space, which converges to the desired

space in the limit M, N → ∞.

– 13 –
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computation yields the twistor lines in the patch U0B

ξ̃[0B]
a =

i

2

(

ζ̃a +
τ2
2

(

z−1Fa(z) − z F̄a(z̄)
)

)

+
i

16π2

∑

qa≥0

n(0)
qa
qa
∑

n∈Z

m6=0

e−Sm,n,qa

m|mτ + n|
zm,n
+ + z

zm,n
+ − z

,

ξ̃
[0B]
0 =

i

2

(

ζ̃0 +
τ2
2

(

z−1F0(z) − z F̄0(z̄)
)

)

+
1

32π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m6=0

e−Sm,n,qa

m|mτ + n|2

×
{

− 2zm,n
+ z

(z − zm,n
+ )2

+
zm,n
+ + z

zm,n
+ − z

[

mτ1 + n

|mτ + n| + iπmτ2qa

(

za

zm,n
+

+ z̄azm,n
+

)]}

,

α
[0B ]
B =

1

4i

[

σ +
τ2
2

(

z−1W (z) − z W̄ (z̄)
)

(4.7)

−
(

ζΛ +
τ2
2

(

z−1zΛ − z z̄Λ
)

)(

ζ̃Λ +
τ2
2

(

z−1FΛ(z) − z F̄Λ(z̄)
)

)]

− 1

32π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m6=0

e−Sm,n,qa

m2|mτ + n|

{

zm,n
+ + z

zm,n
+ − z

− mτ2(mτ1 + n)

2|mτ + n|2
(

z−1 + z
)

−πqata
m2τ2

2

|mτ + n|

(

zm,n
+

z
− z

zm,n
+

)}

.

The result is expressed in terms of Type IIB fields except for the coordinates ζ̃Λ and σ which

coincide with the physical Type IIA fields. This result follows from the gauge equivalence

of the Type IIB twistor space description utilized here with the Type IIA construction

of [18], which is demonstrated in appendices A and B. It shows that the two twistor spaces

are related by a set of gauge transformations and thus represent two different descriptions

of one and the same twistor geometry.

In the presence of instanton corrections, the classical mirror map is insufficient to relate

the remaining Type IIA coordinates ζ̃Λ and σ to the Type IIB fields. The correct relation

requires a generalization of (3.15) and is provided by the non-perturbative mirror map

constructed in the next section. Together with this map, (4.7) then provides the twistor

lines underlying the Type IIB hypermultiplet moduli space.

5 The non-perturbative mirror map

As was shown in the previous section, the mirror map between the fields entering into the

twistor lines ξΛ does not receive quantum corrections from worldsheet, D(−1) and D1-

instantons. On the other hand, the quantum corrections to the twistor lines ξ̃Λ, αB suggest

that the map relating the physical Type IIA fields ζ̃Λ, σ to cΛ, ψ on the Type IIB side

will be subject to similar corrections. The aim of this section is to find the explicit form

of this map. In this course, we follow the same strategy employed in the construction of

the classical mirror map (3.15), demanding consistency between the holomorphic action of

SL(2, Z) on the complex coordinates ξΛ, ξ̃Λ, αB and the transformation of the Type IIB

twistor lines inherited from the physical Type IIB fields and the coordinate z. As we will

see, this condition determines the non-perturbative mirror map between the physical Type

IIA and IIB fields uniquely.
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The key ingredient in the construction is the transformation of the Type IIB fields un-

der SL(2, Z). Classically, the transformation properties are inherited from the dimensional

reduction of the ten-dimensional supergravity action, and we impose that the physical

fields parameterizing the quantum corrected MK(Y ) transform according to the classical

transformation rules (3.9). In a sense, this corresponds to requiring that the SL(2, Z)-

transformations are realized “off-shell”, by defining the physical fields as the ones which

obey these transformation laws also at the quantum level. By demanding that the SL(2,

Z) acts holomorphically on ξΛ, one then establishes that the SL(2, Z)-transformation of z

is also uncorrected and thus given by (3.14).

In the next step, we turn to the twistor lines (4.7) and read ζ̃Λ, σ as a priori unde-

termined functions of the physical Type IIB fields, which, in the classical limit, reduce

to (3.15). Subsequently, we apply the SL(2, Z) transformations (3.9) and (3.14) and im-

pose that the transformed expressions can again be expressed in terms of the holomorphic

twistor lines. This condition suffices to determine the functions ζ̃Λ, σ uniquely. Since their

actual derivation is highly technical and not very illuminating, we will proceed along an-

other route by first “guessing” the correct answer and then showing that the resulting Type

IIB twistor lines indeed transform holomorphically. The generalized mirror map obtained

this way is

R =
1

2
τ2 , za

IIA = za
IIB , ζ0 = τ1 , ζa = −(ca − τ1b

a) ,

ζ̃a = ca +
1

2
κabc b

b(cc − τ1b
c) + ζ̃ inst

a , ζ̃0 = c0 −
1

6
κabc b

abb(cc − τ1b
c) + ζ̃ inst

0 ,

σ = −2

(

ψ +
1

2
τ1c0

)

+ ca(c
a − τ1b

a) − 1

6
κabc b

acb(cc − τ1b
c) + σinst , (5.1)

with the novel instanton correction terms given by

ζ̃ inst
a =

1

8π2

∑

qa≥0

n(0)
qa
qa
∑

n∈Z

m6=0

mτ1 + n

m|mτ + n|2 e−Sm,n,qa ,

ζ̃ inst
0 = − i

16π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m6=0

[

(mτ1 + n)2

|mτ + n|3 + 2πqa

(

ta − iba
mτ1 + n

|mτ + n|

)]

e−Sm,n,qa

m|mτ + n| ,

σinst = τ1ζ̃
inst
0 − (ca − τ1b

a) ζ̃ inst
a +

iτ2
2

8π2

∑

qa≥0

n(0)
qa
qat

a
∑

n 6=0

e−S0,n,qa

n|n| (5.2)

− i

8π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m6=0

(

2 − (mτ1 + n)2

|mτ + n|2
)

(mτ1 + n)e−Sm,n,qa

m2|mτ + n|2 .

This map constitutes the main result of our paper. Notice that only the relations between

the ζ̃Λ, σ and cΛ, ψ are subject to corrections. In particular the classical mirror map

za
IIA = za

IIB, which relates the complex structure moduli to the complexified Kähler moduli,

remains uncorrected. Furthermore, since expressing the correction terms in terms of the

Type IIA fields involves the uncorrected relations in (5.1) only, the map is easily inverted

to give the physical Type IIB fields in terms of the Type IIA coordinates.
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In order to show that this is indeed the correct relation, we first substitute (5.1)

into (4.7). This gives the final expression for the Type IIB twistor lines:

ξ̃[0B ]
a =

i

2
ca +

i

4
κabc b

b(cc − τ1b
c) − iτ2

8
κabc

(

z−1zbzc − z z̄bz̄c
)

+
iτ2

16π2

∑

qa≥0

n(0)
qa
qa
∑

m,n

′ 1 + zm,n
+ z

z − zm,n
+

e−Sm,n,qa

|mτ + n|2 , (5.3)

ξ̃
[0B ]
0 =

i

2
c0 −

i

12
κabc b

abb(cc − τ1b
c) +

iτ2
24

κabc

(

z−1zazbzc − z z̄az̄bz̄c
)

+
τ2

32π3

∑

qa≥0

n(0)
qa

∑

m,n

′
(

1

mξ0 + n
+

mτ1 + n

|mτ + n|2
)

1 + zm,n
+ z

z− zm,n
+

e−Sm,n,qa

|mτ + n|2

+
τ2

16π2

∑

qa≥0

n(0)
qa
qa
∑

m,n

′
(

ta
1 − zm,n

+ z

z − zm,n
+

− iba
1 + zm,n

+ z

z − zm,n
+

)

e−Sm,n,qa

|mτ + n|2 . (5.4)

α
[0B ]
B =

i

2

[

ψ + cΛζ
Λ +

τ2
2
cΛ(z−1zΛ − zz̄Λ)

]

+
i

48
ττ2 κabc

[

z−2zazbzc + z2z̄az̄bz̄c
]

+
i

24
κabcb

a
[

τ2
2 (3tbtc + bbbc) −

[

2ζb + 2τ2
(

z−1 − z
)

bb + 3iτ2
(

z−1 + z
)

tb
]

ζc
]

+
τ2
2

64π3

∑

qa≥0

n(0)
qa

∑

m,n

′ (
(mτ1 + n)

(

z−1 − z
)

− 2mτ2
) 1 + zm,n

+ z

z− zm,n
+

e−Sm,n,qa

|mτ + n|4 . (5.5)

Here we abbreviated ζΛ = (τ1 , −(ca − τ1b
a)) together with zΛ = (1, ba + ita) for con-

venience. The SL(2, Z)-transformations of these twistor lines are readily obtained by

applying (3.9) and (3.14) together with the intermediate formulas collected in appendix C.

It turns out, that they transform according to the classical law (3.13). This is highly

non-trivial, since the derivation of the mirror map only imposed that the twistor lines

transform holomorphically under SL(2, Z) without specifying the transformation to be of

the form (3.13). This establishes that the holomorphic SL(2, Z)-action on the twistor space

is realized “off-shell” in a sense that it is not modified in the presence of worldsheet nor

D(−1) and D1-brane instantons. Furthermore, this result confirms the correctness of the

found mirror map. The uniqueness of (5.1) can be established by adding additional func-

tions of the Type IIB fields to (5.2). The consistency of the transformations then imposes

that these extra contributions have to vanish identically.

6 Perturbative singularities and instanton corrections

One of the salient features of the non-perturbative instanton corrections discussed in this

paper is their ability to dynamically cure singularities in the perturbative metric on M.

The prime example for such a behavior is the conifold singularity which is smoothed out by

D2-brane instantons wrapping the shrinking cycle [1, 17]. Motivated by this observation,

we will investigate the interplay between the D(−1) and D1-instanton corrections and the

generic singularities of M induced by the one-loop correction [24, 25]. In this course, we

will assume that we work at a regular point in the Kähler/Complex structure moduli space,

excluding singularities arising from shrinking (sub-)cycles. Furthermore, our prime focus

will be on the D(−1)-corrections and we will comment about the D1-instanton effects only

at the end of this section.
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6.1 The perturbative one-loop singularity

The perturbatively corrected hypermultiplet metric has been given in [24, 25] and its

description in terms of the twistor space was obtained in [23]. In terms of the physical

Type IIA fields the metric reads

ds2 =
r + 2c

r2(r + c)
dr2 − 1

r

(

NΛΣ − 2(r + c)

rK
zΛz̄Σ

)

(

dζ̃Λ − FΛΘdζΘ
)(

dζ̃Σ − F̄ΣΞdζΞ
)

+
r + c

16r2(r + 2c)

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + 4cAK

)2
+

4(r + c)

r
Kab̄ dzadz̄b̄ , (6.1)

where r = eφ, c = − χX

192π , NΛΣ ≡ i(FΛΣ − F̄ΛΣ), K = − logK(z, z̄) is the Kähler potential

of the special Kähler base KK(X) and AK ≡ i (Kadz
a −Kādz̄

ā) is its Kähler connection.

With respect to the string coupling r, the metric possesses three apparent singularities

at r = 0, r = −c and r = −2c. The last two arise from the one-loop correction and

occur in CY compactifications with positive Euler number χX > 0. Notably, the first two

points constitute coordinate singularities only. The singularity at r = 0 can be removed

by a simple rescaling of ζΛ, ζ̃Λ and σ by a power of r and returning to the variable φ,

whereas the singularity at r = −c disappears after one trades r for the ten-dimensional

string coupling (cf. (3.7))

τ2 = 4 e
1
2
K(z,z̄)

√
r + c . (6.2)

This picture is confirmed by computing the quadratic curvature invariant RµνρσR
µνρσ,

which diverges at r = −2c only, and remains regular at r = −c and r = 0. Thus the

only curvature singularity of the perturbatively corrected hypermultiplet metric appears

for χX > 0 at r = −2c.8

At the level of the twistor space construction this singularity is caused by the degener-

ation of the basis of holomorphic (1, 0)-forms (2.12). Evaluating these for the perturbative

twistor lines (3.4) and taking suitable linear combinations, an explicit basis of (1, 0)-forms

is given by [23]

Πa = dza, YΛ = dζ̃Λ − FΛΣdζΣ,

Σ = deφ + 2cd log τ2 +
i

4

[

dσ + ζ̃ΛdζΛ − ζΛdζ̃Λ

]

. (6.3)

The dilaton-direction in (6.1) is generated by the real part of Σ. This part degenerates at

the point where

deφ + 2cd log τ2 = 0 mod Πa,YΛ . (6.4)

Substituting the relation (6.2), one immediately finds that the only solution of (6.4) is

given by r = −2c, which clarifies the origin of the perturbative singularity from the twisto-

rial viewpoint.

8This observation is already suggested by figure 1 of [36].
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6.2 The effect of D-instanton corrections

In order to analyze the effects of the D-instanton contributions on the perturbative singu-

larity, we first compute the D(−1) and D1-instanton corrections to (6.3). Starting from the

Type IIA twistor lines (A.7) and using the transition functions (A.5) together with (3.2)

allows to determine the non-perturbative corrections to α
[+]
0 , ξ̃

[+]
Λ,0. Substituting the result

into (2.12), the instanton-corrected basis of holomorphic (1, 0)-forms is given by

Πa = dza , YΛ = dζ̃Λ − FΛΣdζΣ − i

4π2

∑

γ

nγ qΛ dKγ ,

Σ = deφ+ 2cd log τ2 +
i

4

[

dσ + ζ̃ΛdζΛ − ζΛdζ̃Λ − i

8π2

∑

γ

nγqΛ
(

τ2z
ΛdLγ − Lγd

(

τ2z̄
Λ
))

]

.

(6.5)

Here

Lγ ≡ i

4

d

dz
I(1)

γ

∣

∣

∣

∣

z=0

(6.6)

denotes the subleading coefficient in the z-expansion of I(1)
γ (z) around z = 0, Kγ and I(1)

γ

are defined in (A.8), and eφ is the instanton corrected contact potential (A.1). Owed to

the relation qΛz
ΛLγ = qΛz̄

ΛLγ , the term appearing in the square bracket in Σ is real. Thus

the equation controlling the degeneracy of the basis (6.5) is still of the form (6.4), with the

perturbative eφ now dressed up with instanton corrections.

In order to understand the fate of the perturbative singularity at r = −2c, we need to

understand the behavior of eφ at strong coupling τ2 → 0. At this point it is useful to switch

to the mirror symmetric Type IIB description (4.1) where we can use S-duality to relate

eφ at strong and weak string coupling. The D(−1)-instanton corrections (leaving out the

D1-instanton contribution for the time being) to the four-dimensional dilaton are readily

obtained from the second term in (4.1) by setting qa = 0, n
(0)
0 = −χY /2. Together with

the perturbative worldsheet and string loop corrections, they combine into a real analytic

Eisenstein series

eφD(−1) = − χY τ
1/2
2

16(2π)3
E3/2(τ, τ̄ ) , E3/2(τ, τ̄) :=

∑

m,n

′ τ
3/2
2

|mτ + n|3 . (6.7)

The strong coupling limit of these terms can then be extracted by using the SL(2, Z)-

invariance of E3/2 and can conveniently be done by first applying an S-duality τ 7→ −τ−1

to the weak coupling expansion of E3/2 and subsequently taking the limit τ1 → 0

eφD(−1) = − χY

16(2π)3
(

2ζ(3)τ−1
2 + 4ζ(2)τ2

)

+O(e−2πτ−1
2 ) . (6.8)

Including the tree-level term, eφ then has the strong coupling expansion

eφ = − χY

16(2π)3
(

2ζ(3)τ−1
2 + 4ζ(2)τ2

)

+
1

2
V (t)τ2

2 + · · · , (6.9)
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where the dots stand for terms which are exponentially suppressed. As expected, the

strong coupling asymptotics is dominated by the instanton effects. In this asymptotics the

four-dimensional dilaton (related to the four-dimensional string coupling via e−φ ∝ g2
(4))

behaves as eφ ∼ τ−1
2 so that g(4) ∼ g

−1/2
(10) . In other words, the four-dimensional coupling is

prohibited from divergence: the region of large g(4) is inaccessible on the studied corners

of the moduli space.

In the Type IIB description, the perturbative singularity, r = −2c with c = χY

196π ,

appears for CYs Y (mirror to X) with χY < 0. In order to make a statement about the

fate of this singularity in the presence of D(−1)-instantons, the condition (6.4) indicates

that it is sufficient to consider the asymptotics of deφ

d log τ2
in the weak and strong coupling

regime. For τ2 large (and in the large volume limit), the contact potential is dominated by

the classical term so that
deφ

d log τ2
∼

τ2→∞
V (t) τ2

2 > 0. (6.10)

At strong coupling, the expansion (6.9) yields

deφ

d log τ2
∼

τ2→0

ζ(3)χY

8(2π)3
τ−1
2 . (6.11)

For χY < 0 the two asymptotics have opposite signs. Therefore the equation (6.4) neces-

sarily has a solution at finite value of τ2. Thus we conclude that the D(−1)-instantons do

not resolve the singularity of perturbative hypermultiplet metric.

Before closing this section, let us briefly comment on the effect of the D1-instantons

at strong coupling. Their contributions are given by the terms with non-vanishing charge

qa in (4.1). In this case, the application of S-duality does not lead to terms which are

exponentially suppressed as τ2 → 0, since the SL(2, Z)-transformations also act on the

other fields, in particular ta 7→ |cτ + d|ta. Therefore, one should work directly with the

double sums in (4.1). The leading contribution at small τ2 (again assuming τ1 = 0) comes

from the terms with n = 0 and is given by

τ−1
2

4(2π)3

∑

γ̂+

n(0)
qa

∞
∑

m=1

e−2πmτ2qata

m3
∼ ζ(3)

4(2π)3
τ−1
2

∑

γ̂+

n(0)
qa
. (6.12)

In order for the sum over the charges qa to converge, the limit τ2 → 0 has to be taken by

keeping qat
aτ2 fixed and sufficiently large. In this “decompactification limit” one concludes

that the D1-instanton contribution to the contact potential has the same asymptotics as

the one due to D(−1)-instantons. Keeping ta finite, however, the sum over BPS invariants

n
(0)
qa diverges, so that it is hard to draw any definite conclusions. A proper treatment of

this limit will, most likely, involve a resummation of the instanton series, as, e.g., along the

lines suggested in [37]. However, in this work we are not embarking on this point.

7 Discussion and outlook

The main result of our paper is the non-perturbative mirror map (5.1) which establishes

a relation between Type IIA and Type IIB string theory compactified on a generic pair
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of mirror Calabi-Yau threefolds, taking into account worldsheet, D(−1), and D1-instanton

corrections. This map constitutes a non-perturbative generalization of the classical limit

obtained in [10]. In contrast to the classical case, our result is derived from the twistor

space description of the corresponding hypermultiplet moduli spaces, thereby avoiding the

explicit construction of the underlying QK metrics. Notably, the quantum corrections to

the classical map are uniquely determined by the consistent implementation of symplectic

covariance (Type IIA) and SL(2, Z)-transformations (Type IIB) on the twistor space.

As a spin-off we found that the SL(2, Z)-transformation of the twistor lines does not

receive quantum corrections from these non-perturbative effects. We expect that this result

will continue to hold once the additional corrections from D3, D5, and NS5-instantons

are included. The “off-shell” realization of the SL(2, Z) invariance could then provide a

powerful tool in unraveling the physical structures underlying these corrections.

A natural question arising from our result concerns the inclusion of these additional

corrections in the generalized mirror map. Using the Type IIA formulation, the twistor

lines describing D2-branes wrapped on arbitrary three-dimensional special Lagrangian sub-

manifolds have been calculated explicitly in the linear instanton approximation [18] and to

all orders in a somewhat implicit form in [19]. The resummation technique of appendix B

can, in principle, be applied to this case as well, thereby providing an interesting general-

ization of the results reported here. An important test for the consistency of the resulting

Type IIB twistor lines is then given by their transformation under SL(2, Z). In particular

the D3-instantons mirror to the B-type D2-instantons are expected to organize themselves

into a modular form. This would allow the generalization of our construction, taking these

additional corrections into account as well.

Curiously, a “naive” Poisson resummation of the Type IIA twistor lines in the presence

of B-type D2-instantons does not lead to Type IIB twistor lines exhibiting the desired

behavior under SL(2, Z). One possible explanation for this intriguing observation is that

the Type IIA instanton numbers nγ develop a dependence on the resummed charge once

all D2-instantons are included. Thus further progress in this direction should go hand in

hand with a better understanding of the instanton numbers appearing on the Type IIA

side together with their mirrors.

Our second result concerns the singularity structure of the hypermultiplet moduli

space. In this context, we found that the singularities in the hypermultiplet moduli space

occurring at the perturbative level are not resolved by the inclusion of D(−1)-brane in-

stantons, even though they are part of the same modular invariant. This is, however, in

good agreement with the expectation that the dominating non-perturbative contribution at

strong coupling should be given by the NS5-brane instantons which have not been included

in our analysis. Some progress towards understanding the role of the NS5-brane instantons

has been made in [20, 21], but their contribution remains to be fully understood. We hope

to return to this point in the future.
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A Type IIA and Type IIB twistor spaces and their relation

Keeping key features as, e.g., the SL(2, Z)-invariance on the Type IIB side or symplectic

invariance and wall-crossings in Type IIA manifest, naturally leads to twistor space de-

scriptions of instanton corrected HM moduli spaces, which utilize different sets of patches

and transition functions. Indeed, the Type IIB description presented in section 4 is quite

different from its Type IIA cousin constructed in [18] and reviewed in appendix A.1. How-

ever, the mirror symmetry indicates that there should be an intrinsic relation between these

constructions. In appendix A.2, we will then show that the two constructions are indeed

equivalent and related by a gauge-transformation. Technical details of the calculation are

further referred to appendix B.

A.1 Instanton corrected Type IIA HM moduli space

The HM moduli space of Type IIA strings compactified on a CY X receives instanton cor-

rections from D2-branes wrapping the 3-cycles of X. The subclass of these D2-instanton

corrections wrapping A-cycles is related to D(−1) and D1-instantons by mirror symme-

try [38]. In particular, this implies that the contact potential underlying the Type IIA

picture can be obtained by Poisson resumming (4.1) on n ∈ Z and subsequently applying

the classical mirror map (3.15), which, for the fields appearing in (4.1), does not receive

quantum corrections. As a result, one obtains [11]

eΦIIA =
τ2
2

16
K(z, z̄) +

χX

192π
+

τ2
16π2

∑

γ

nγ

∑

m>0

|qΛzΛ|
m

cos
(

2πmqΛζ
Λ
)

K1(2πmτ2|qΛzΛ|) .

(A.1)

Matching (4.1) and (A.1) requires the summation over the charge lattice γ = {q0, qa}
where q0 ∈ Z, qaγ

a ∈ H+
2 (Y ) ∪H−

2 (Y ) ∪ {0} excluding the case γ = 0, and implies that

the instanton numbers nγ are related to the genus zero Gopakumar-Vafa invariants of the

mirror CY by

nγ = n(q0,±qa) ≡ n(0)
qa

(Y ) for {qa} 6= 0 , n(q0,0) = 2n
(0)
0 = χX . (A.2)

The twistor space description for these corrections has recently been developed in [18,

19] and the covering underlying the construction is shown in figure 2. It consists of the

usual patches around the poles U± and two additional patches, U0A
and U0′A

, which cover

the left and the right half-planes of CP 1 considered as a complex z-plane. They are sep-

arated by two rays joining z = 0 and z = ∞ and going along the semi-infinite imaginary

axes ℓ± ≡ iR±.
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Figure 2. Transition from the classical to the instanton corrected Type IIA twistor space con-
structed in [18]. The instanton corrections are encoded in the two BPS rays ℓ± which are covered by
an extension of the patches U±. The description is gauge-equivalent to the novel Type IIB twistor
space illustrated in figure 1.

The discontinuities along ℓ± imply the existence of two transition functions relating

U0A
and U0′A

since the analytical continuation from one patch to another can be done either

through ℓ+ or ℓ−. These two functions read, respectively, as

H [00′]+ =
i

2
GIIA(ξ) , H [00′]− = − i

2
ḠIIA(ξ) , (A.3)

where the function

GIIA(ξ) =
1

(2π)2

∑

γ+

nγ Li2

(

e−2πiqΛξΛ
)

(A.4)

incorporates the instanton contributions. Here the sum over γ+ is supported on charges

γ = {qΛ} with ℜ
(

qΛz
Λ
)

> 0. In addition one has to specify the transition functions

connecting U0A
(or U0′A

) to U±. They have both perturbative and instanton contributions

and read

H [+0] =
i

2
(F (ξ) + G(ξ)) , H [−0] =

i

2

(

F̄ (ξ) − G(ξ)
)

, (A.5)

where we introduced

G(ξ) =
i

4π3

∑

γ+

nγ

∫ −i∞

0

Ξ dΞ

(kΛξΛ)2 − Ξ2
Li2
(

e−2πi Ξ
)

. (A.6)

Note that the function (A.4) and its conjugate are simply the discontinuities of Gγ along the

cuts which near the poles can be taken to be along the contours ℓ±. This property ensures

the mutual consistency of the transition functions introduced above and allows to reduce

all calculations to the evaluation of integrals along “open contours” ℓ± [18, 19]. Finally,
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as in (3.1), there is one non-vanishing anomalous dimension which is cα = χX/(96π). It

incorporates the effect of the one-loop perturbative contribution found in [24]. Altogether

one can check that the presented construction reproduces the contact potential (A.1).

The twistor lines in the patches U0A
and U0′A

have been computed in [18] and are

given by

ξΛ = ζΛ + R
(

z−1zΛ − z z̄Λ
)

(A.7a)

ξ̃
[0A]
Λ =

i

2

(

ζ̃Λ + R
(

z−1FΛ − z F̄Λ

)

)

+
i

32π2

∑

γ

nγ qΛ I(1)
γ (z) , (A.7b)

α
[0A]
A = σ + R(z−1W − z W̄ ) +

iχX

24π
log z +

iR
2π2

∑

γ

nγqΛ
(

z−1zΛ + zz̄Λ
)

Kγ

+
1

16π2

∑

γ

nγ

[

1

πi
I(2)

γ (z) + qΛξ
ΛI(1)

γ (z)

]

, (A.7c)

where the sum over γ runs over the union of γ+ and γ− and we introduced

Kγ ≡ i

4
I(1)

γ (0) =

∞
∑

m=1

1

m
sin
(

2πmqΛζ
Λ
)

K0

(

4πmR|qΛzΛ|
)

,

I(ν)
γ (z) ≡

∞
∑

m=1

∑

s=±1

sν

mν
e−2πismqΛζΛ

∫ ∞

0

dt

t

t− ǫγsiz

t+ ǫγsiz
e−2πmǫγRqΛ(t−1zΛ+tz̄Λ) ,

(A.8)

with ǫγ = sign(ℜqΛzΛ).

We remark that the only effect of the non-vanishing anomalous dimension on the

twistor lines is the logarithmic term in αA which is present in all patches. If the cut of

the logarithm is set to be along the imaginary axis, one gets an additional contribution

to the transition function H [00′], which is needed to cancel the difference between the two

branches of the logarithm on the two sides of the cut. To relate our picture to the Type IIB

formulation in the next subsection, it will be convenient to split the logarithmic term into

two parts and direct the cut of each term along positive and negative imaginary half-axes,

respectively. In this case, the additional contributions read9

H [00′]±
an = ± iχX

96
. (A.9)

This anomalous contribution is important for establishing mirror symmetry at the level of

the twistor space.

A.2 Mirror symmetry of the twistor spaces

We will now show that the two twistor spaces underlying the Type IIA and Type IIB

formulations are actually identical, as required by mirror symmetry. More precisely, we

demonstrate that they are related by a gauge transformation of the form (2.8). Since the

9As a consequence of this anomalous contribution, the consistency condition (2.7) picks up an additional

constant term when relating patches separated by the logarithmic branch-cut.
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twistor lines ξΛ are already identical in the Type IIA and Type IIB formulation, it suffices

to consider gauge transformations of ξ̃
[i]
Λ and α

[i]
B

ξ̃
[i]
Λ 7→ ξ̃

[i]
Λ − ∂ξΛT [i] , α

[i]
B 7→ α

[i]
B − T [i] . (A.10)

Thus, knowing the relation between the twistor lines αB in the two constructions allows us

to directly read off the holomorphic functions underlying the gauge transformation.

In the first step towards establishing this gauge equivalence, we perform a Poisson re-

summation of the Type IIA twistor lines defined in the patches U0A
and U0′A

. The details of

this resummation can be found in appendix B. In both patches the result can be written as

ξ̃
[0A]
Λ = ξ̃

[0B]
Λ + ∂ξΛTα , α

[0A]
B = α

[0B ]
B + Tα , (A.11)

where Tα(ξΛ) is given in (B.25). Here the relation is written on the intersection U0A
∩U0B

which coincides with the second quadrant of the complex z-plane. To write it in other

quadrants, it is sufficient to put primes on the patch labels in appropriate places.

This relation between twistor lines has the form of the gauge transformation (A.10) so

that it is tempting to immediately apply such interpretation to it. However, this cannot

be done straightforwardly because the function Tα is not holomorphic everywhere but

has discontinuities along the real and imaginary axes, originating from the sign functions

in (B.25). This is consistent with the fact that Tα arises from the pole at t = ±iz in the

original integral (A.8), which is responsible for the discontinuity of the Type IIA twistor

lines across the rays ℓ± along the imaginary axis. Similarly, the discontinuity along the real

axis accounts for the discontinuity of the Type IIB twistor lines owed to the condensation

of poles, as can be seen explicitly from the dual representation of the T -terms in (B.20).

The presence of these discontinuities suggests that one should refine the covering of the

CP 1 used in the Type IIA picture by representing U0A
and U0′A

as a union of three patches

U0A
= UR− ∪ UII ∪ UIII, U0′

A
= UR+ ∪ UI ∪ UIV, (A.12)

which are related by trivial transition functions. Here UR± surround the positive and

negative real axes and the other patches cover the corresponding quadrants of the z-

complex plane. In each quadrant one can define the holomorphic function T [i]
α = Tα,

i ∈ {I, II, III, IV}, which then can be analytically continued to the whole plane. It is easy

to check that they are given by

T [I]
α =

i

2
G−

A, T [II]
α = − i

2
G+

A, T [III]
α =

i

2
Ḡ−

A, T [IV]
α = − i

2
Ḡ+

A, (A.13)

where we defined

G±
A(ξΛ) =

1

(2π)2

∑

±γ+

n(0)
qa

Li2

(

e−2πiqΛξΛ
)

+
χX

96
, (A.14)

with the sum over charges spanning the following lattice

±γ+ = {γ : ℜ(qΛz
Λ) > 0 and ± qat

a ≥ 0}. (A.15)
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This definition implies G+
A + G−

A = GIIA + χX

48 , so that (A.13) correctly reproduce the

discontinuity across the BPS rays ℓ±.

As a consequence, the relation between twistor lines (A.11) in the four quadrants of

the z-plane can be rewritten as

ξ̃
[i]A
Λ = ξ̃

[i]B
Λ + ∂ξΛT [i]

α , α
[i]A
B = α

[i]B
B + T [i]

α , (A.16)

where the indices [i]A and [i]B denote the restriction of the corresponding Type IIA or

Type IIB twistor line to the patch Ui. Since every T [i]
α is holomorphic in Ui, they now can

be interpreted as gauge-transformations T [i] from (A.10) relating ξ̃
[i]A
Λ , α

[i]A
B to ξ̃

[i]B
Λ , α

[i]B
B .

In this way we recover the Type IIB twistor lines in each of the quadrants.

Such gauge transformations affect essentially all transition functions. Let us first con-

sider the corresponding change of the transition functions between quadrants I and II and

between III and IV. To get the complete result, one should also take into account the

effect of the anomalous dimension expressed in terms of the additional contribution to

H [00′] (A.9). Then from (A.3), (A.13) and (A.9), the new functions are found to be

H [I II]B = −
(

H [00′]+ +H [00′]+
an

)

+ T [I]
α − T [II]

α = 0 ,

H [III IV]B =
(

H [00′]− +H [00′]−
an

)

+ T [III]
α − T [IV]

α = 0 . (A.17)

Thus the gauge transformation removes the branch cuts along the BPS rays. Therefore,

UI and UII, as well as UIII and UIV, can be unified in a single patch, which coincides with

U0B
and U0′B

, respectively.

Next, the transition functions between the quadrants and the patches UR± become

H [iR+]B = T [i]
α , i = I, IV, H [iR−]B = T [i]

α , i = II, III. (A.18)

Comparing the representation (B.20) of the function Tα with the function GIIB given

in (4.3), one observes that they are almost the same. In this “Type IIB” representa-

tion, the difference is due to some sign factors and an additional non-holomorphic term in

the exponential of Tα. However, performing the Poisson resummation, one finds that the

difference between these two functions is in fact holomorphic in both patches UR± . Indeed,

the resumed expression for Tα is given in (B.25), whereas the result of resummation of GIIB

immediately follows from the first equation in (B.22) and reads

GIIB =
ε̃

4π2

∑

qa≥0

n(0)
qa





∞
∑

ε̃q0=1

Li2(e
−2πiqΛξΛ

) +
1

2
n(0)

qa
Li2

(

e−2πiqaξa
)



 . (A.19)

Then, denoting x = qab
a and y = qat

a, for both i = II and III one obtains

T [i]
α +

i

2
GIIB =

i

8π2





∑

γ̂: x<0,y>0

∑

0<q0<x

−
∑

γ̂: x>0,y>0

∑

−x<q0<0



n(0)
qa

Li2

(

e−2πiqΛξΛ
)

+
i

16π2





∑

γ̂: x<0,y>0

−
∑

γ̂: x>0,y>0



n(0)
qa

Li2

(

e−2πiqaξa
)

.

(A.20)
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This is a holomorphic function and therefore can be removed by a gauge transformation in

the patch UR− . Similarly, one can show that for i = I and IV the combination T [i]
α + i

2 ḠIIB(ξ)

is given by the same expression (A.20). Thus, it is also holomorphic and removable by a

gauge transformation in the patch UR+ , so that in both cases one recovers the transition

functions of the Type IIB formulation.

Finally, it remains to consider the transition functions between the north pole and

different quadrants. They are given by

H [+i]B =
i

2
F +

i

2
G[i] − T [i]

α , (A.21)

where G[i] denotes the corresponding holomorphic branch of the function (A.6) in Ui. The

last two terms coincide with i
2 G − Tα. This combination decomposes into two parts. One

part is the “constant” term iεε̃
192 χX with discontinuities along real and imaginary axes,

while the rest is holomorphic10 in U+ \ (UR+ ∪ UR−) and therefore can be removed by

an appropriate gauge transformation. As a result, up to the above “constant” term, the

transition functions between the north pole and all quadrants are given by the holomorphic

prepotential only. A similar gauge transformation can be performed in the patch U− around

the south pole where one finds the same result.

The remaining constant piece then has precisely the correct form to cancel the anoma-

lous dimension which is taken to be vanishing on the Type IIB side. To see this, let us note

that the presence of singular terms in the twistor lines due to anomalous dimensions allows

for similar singularities in the gauge transformations. In particular, the gauge transforma-

tion generated by T [i] = − iεε̃
192 χX for all patches simply rotates the cuts of the logarithm

from the imaginary to the real axis. In our case, such a gauge transformation has been

already performed in the four quadrants and, once it is done in U±, it precisely cancels the

remaining constant terms in H [±i]B . However, this argument requires this gauge transfor-

mation to be performed also in UR± , which would introduce additional terms in H [iR±]B .

Setting these terms to zero “by hand” is equivalent to taking the anomalous dimension

to be vanishing. Thus we arrive at the same set of anomalous dimensions and transition

functions (4.5) which describes the twistor space of Type IIB HM moduli space.

At the end, we recapitulate the gauge transformations which map the initial Type IIA

twistor space into the Type IIB one. They read

T [i] = T [i]
α , T [±] = Tα ∓ i

2
G , T [R−] = Tα +

i

2
GIIB , T [R+] = Tα +

i

2
ḠIIB . (A.22)

This completes the proof and establishes mirror symmetry between the Type IIA and Type

IIB descriptions at the level of the twistor space.

10In fact, the situation is complicated by the cut along the real axis originating from dependence of ∆γ

on ε̃ in (B.25). However, the entire real axis (except 0) is supposed to be covered by UR+
and UR−

so that

formally our function is indeed regular in the domain under consideration. Another way to see this is to

use the representation (B.20) where, instead of the cut, one has infinitely many poles which by assumption

belong to UR+
and UR−

. All these complications are in fact a consequence of that the covering used to

define the Type IIB twistor space is not regular (see footnote 7).
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B Poisson resummation of the twistor lines

In this appendix we collect the technical details underlying the Poisson resummation of the

twistor lines (A.7) with respect to the quantum number q0, thereby providing the derivation

of eq. (A.11). Inspecting (A.7), we notice that all instanton corrections are essentially

encoded in the functions I(ν)
γ (z). Since the instanton numbers nγ are independent of q0,

one can simplify the calculation by first considering the Poisson resummation of

I(ν)
γ̂ (z) ≡

∑

q0∈Z

I(ν)
γ (z) with γ̂ 6= 0 , (B.1a)

I(2)
0 (z) ≡

∑

q0 6=0

I(2)
γ (z) with γ̂ = 0, (B.1b)

where we have extracted the sum over the charge q0 from the lattice sum over γ = {q0, γ̂}.
Given these “basic resummations” the other terms entering the twistor lines can be ob-

tained by differentiating with respect to appropriate fields. Thus, we first consider the

resummation of (B.1) before applying the result to the twistor lines in Subsection B.2.

B.1 Resuming I(ν)
γ (z)

In general Poisson resummation relies on the formula

∑

n∈Z

f(x+ n) =
∑

n∈Z

f̃(2πn)e2πinx, (B.2)

where

f(x) =
1

2π

∫ ∞

−∞
dw f̃(w)eiwx, f̃(w) =

∫ ∞

−∞
dx f(x)e−iwx , (B.3)

are related by Fourier transform.

In order to apply this formula to (B.1a), we introduce the following notations

x = qab
a, y = qat

a, Θ = qa(ζ
a − baζ0) . (B.4)

Then the function f(x+ q0) entering the l.h.s. of (B.2) is found as

f(x) =

∞
∑

m=1

∑

s=±1

e−2πism(Θ+xζ0)

(sm)ν

∫ ∞

0

dt

t

t− sign(x)siz

t+ sign(x)siz
e−2πmsign(x)R( x+iy

t
+t(x−iy)). (B.5)

Its Fourier transform is obtained by using sign(x) to split the x-integration into two inte-

grals along the half-axes. The resulting integrands are of the type e−Ax,ReA > 0. Their

evaluation yields

f̃(w) =
1

2π

∞
∑

m=1

∑

s,s′=±1

e−2πismΘ

(sm)ν

∫ ∞

0

dt

t

t− ss′iz

t+ ss′iz

e−2πims′Ry(t−1−t)

m (R (t−1 + t) + iss′ζ0) + is′w
2π

. (B.6)

The sign variables s and ss′ can then be used to extend the sum over m to negative

values and the t-integral along the whole real axis, respectively. This should be contrasted
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with eq. (B.5) where the extension of the t-integral to the real axis cannot be performed.

Substituting this result into the r.h.s. of (B.2) then yields

I(ν)
γ̂ =

1

2π

∑

n∈Z

m6=0

e2πi(nx−mΘ)

mν−1|m|

∫ ∞

−∞

dt

t

t− iz

t+ iz

e−2πimRy(t−1−t)

m (R (t−1 + t) + iζ0) + in
. (B.7)

The t-integral can now be evaluated explicitly using the method of residues by closing

the integration contour at infinity in the half-plane where the integrand is exponentially

suppressed. The integrand has three poles located at t = −iz and t = −izm,n
± with zm,n

±

defined in (4.4). Their contribution depends on the signs

ǫ = signy , ε = −sign(ℜz) . (B.8)

For ǫ = ±1 the contour includes the poles at zm,n
± , respectively. The pole at t = −iz

contributes for myℜz < 0 only, and yields different contributions on the four quadrants

in the (y,ℜz)-plane. Introducing sign-functions in the appropriate places the resulting

expressions can be combined to

I(ν)
γ̂ =

∑

n∈Z

m6=0

e2πi(nx−mΘ)−2π|y||mτ+n|

mν |mτ + n|
zm,n

ǫ + z

zm,n
ǫ − z

+ 2ǫ
∑

n∈Z

ǫεm>0

e2πi(nx−mΘ)

mν

e2πmyR(z−1+z)

mξ0 + n
. (B.9)

This result completes the resummation of I(ν)
γ̂ .

We now turn to the second “basic resummation” (B.1b). Substituting (A.8), it explic-

itly reads

I(2)
0 (z) =

∑

q0 6=0

∞
∑

m=1

∑

s=±1

e−2πismq0ζ0

m2

∫ ∞

0

dt

t

t− sign(q0)siz

t+ sign(q0)siz
e−2πm|q0|R(t−1+t). (B.10)

The Poisson resummation formula then requires to include the q0 = 0-term in the sum

I(2)
0 (z) =

∑

q0∈Z

f(q0) − f(0) . (B.11)

For q0 = 0, the t-integral arising from (B.10) can be evaluated analytically. In fact,

at every boundary it diverges logarithmically, but these divergences can be canceled by

first combining contributions of t and 1/t since this transformation leaves the exponential

invariant. Furthermore, the factors sign(q0) can be removed by redefining s → sign(q0)s,

which leads to |q0| in the first exponential. The functions entering into (B.11) then read

f(q0) =
∞
∑

m=1

∑

s=±1

e−2πism|q0|ζ0

m2

∫ ∞

0

dt

t

t− siz

t+ siz
e−2πm|q0|R(t−1+t) ,

f(0) = − 2π2

3
log z .

(B.12)

Note that f(q0) is obtained from (B.5) by setting qa = 0. Its Poisson resummation can be

obtained by following similar steps as for I(ν)
γ̂ . The result turns out to be the same as (B.9)
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evaluated for ν = 2, qa = 0 and ǫ = 1, which can be verified by an explicit evaluation of

the integrals. Substituting it into (B.11) then yields

I(2)
0 (z) =

∑

n∈Z

m6=0

1

m2|mτ + n|
zm,n
+ + z

zm,n
+ − z

+
∑

n∈Z

m>0

2ε

m2(mξ0 + n)
+

2π2

3
log z. (B.13)

Notice that the second sum over n converges because the combination of nth and −nth

terms scales like n−2. This result concludes the Poisson resummation of (B.1) and we will

now proceed with its application to the Type IIA twistor lines.

B.2 Resuming the Type IIA twistor lines

Under the decomposition γ = {q0, γ̂} the instanton corrections to the twistor lines (A.7)

give rise to four types of terms: qaI(1)
γ̂ linear in charges, I(2)

γ̂ without charges, q0I(1)
γ linear

in q0, and terms with I(2)
0 . By virtue of the relation Kγ = i

4I
(1)
γ (0), the contributions of

the form qaKγ and q0Kγ result as a special case.

Taking into account the sum over charges and that nγ = nγ̂ = n−γ̂ for γ̂ 6= 0, the

expressions for the first two types of terms can be summarized as

∑

γ̂ 6=0

nγ̂q
2−ν
a I(ν)

γ̂ = 2
∑

γ̂+

nγ̂q
2−ν
a







∑

n∈Z

m6=0

e2πi(nx−mΘ)

mν

e−2πy|mτ+n|

|mτ + n|
zm,n
+ + z

zm,n
+ − z

+2εν+1
∑

n∈Z

m>0

e2πε(myR(z−1+z)+i(nx−mΘ))

mν (mξ0 + n)






.

(B.14)

Here γ̂+ is the set of charges satisfying y > 0 and already appeared in the description of

section 4. The terms linear in q0 are related to this result by

∑

q0∈Z

q0I(ν)
γ (z) = − 1

2πi
∂ζ0I(ν+1)

γ̂ , (B.15)

which can be established based on the definition (A.8) where the r.h.s. is expressed in

terms of Type IIA variables. Finally, either setting z = 0 in the above equations or redoing

calculations from the very beginning, one can show that

∑

γ̂ 6=0

nγ̂qa
∑

q0∈Z

Kγ =
i

2

∑

γ̂+

nγ̂qa
∑

n∈Z

m6=0

e2πi(nx−mΘ)−2π|y||mτ+n|

m|mτ + n| , (B.16)

∑

γ

nγq0Kγ = − 1

4π

∑

n∈Z

m6=0





∑

γ̂+

nγ̂∂ζ0

e2πi(nx−mΘ)−2πy|mτ+n|

m2|mτ + n| +
χY

2

mτ1 + n

m|mτ + n|3



 .

With these relations, we now have all the ingredients to compute the resummed Type

IIA twistor lines (A.7) and compare them to their Type IIB counterparts (4.7). Since one
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starts from the Type IIA side, we work in the patch U0A
. The decomposition of the sum

over charges in ξ̃
[0A]
Λ then yields

ξ̃[0A]
a =

i

2

(

ζ̃a + R
(

z−1Fa − z F̄a

)

)

+
i

32π2

∑

γ̂ 6=0

nγ̂qaI(1)
γ̂ ,

ξ̃
[0A]
0 =

i

2

(

ζ̃0 + R
(

z−1F0 − z F̄0

)

)

− 1

64π3
∂ζ0





∑

γ̂ 6=0

nγ̂I(2)
γ̂ − χY I(2)

0



 .

(B.17)

In order to facilitate the comparison between the last twistor lines, it turns out to be

convenient to trade α
[0A]
A for the combination α

[0A]
B given in (3.12). For the latter quantity

the decomposition gives

α
[0A]
B = − i

4

[

σ + R(z−1W − zW̄ )

−
(

ζΛ + R(z−1zΛ − zz̄Λ)
) (

ζ̃Λ + R(z−1FΛ − zF̄Λ)
)

]

− χY

96π
log z− 1

64π3





∑

γ̂ 6=0

nγ̂I(2)
γ̂ − χY I(2)

0





+
R

8π2





∑

γ̂ 6=0

nγ̂qa(z
−1za + zz̄a)

∑

q0∈Z

Kγ + (z−1 + z)
∑

γ

nγq0Kγ



 .

(B.18)

Substituting the relations (B.13)–(B.16), a straightforward though somewhat tedious com-

putation allows to establish the following relation between the Type IIA and Type IIB

twistor lines

ξ̃
[0A]
Λ = ξ̃

[0B]
Λ + T̃Λ , α

[0A]
B = α

[0B ]
B + Tα , (B.19)

where we introduced

T̃a =
i

8π2

∑

qa≥0

n(0)
qa
qa
∑

n∈Z

m>0

e−2πiεqa(mξa−ba(mξ0+n))

m (mξ0 + n)
,

T̃0 =
1

16π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m>0

(

ε− 2πiqab
a
(

mξ0 + n
)) e−2πiεqa(mξa−ba(mξ0+n))

m (mξ0 + n)2
,

Tα = − ε

16π3

∑

qa≥0

n(0)
qa

∑

n∈Z

m>0

e−2πiεqa(mξa−ba(mξ0+n))

m2 (mξ0 + n)
.

(B.20)

In order to verify these identities, it is useful to note that the terms proportional to χY pro-

vide the qa = 0 part of the sums over charges once (A.2) is applied. Furthermore, we have

2πy|mτ + n| − 2πi(nx−mΘ) =Sm,n,qa ,

−myR(z−1 + z) − i (nx−mΘ) = iqa
(

mξa − ba(mξ0 + n)
)

.
(B.21)

Tracing back the origin of the terms appearing in (B.19), it is worthwhile noting that the

twistor lines ξ̃
[0B ]
Λ , α

[0B ]
B are generated by the poles t = −izm,n

± while the T -terms originate

from the pole at t = −iz.
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In fact, it can be demonstrated that away from the real and imaginary axes, the addi-

tional contributions T̃Λ,Tα are holomorphic functions of ξΛ. This is a crucial prerequisite

for removing these terms by an appropriate gauge transformation. To show this, one should

“undo” the Poisson resummation on n for these extra contributions. In this course, we need

the following relations in the sector qa 6= 0

∑

n∈Z

e2πiεqaba(mξ0+n)

mξ0 + n
= 2πiε

∑

q0∈Z

∆γ(z)e−2πiεmq0ξ0
, (B.22)

∑

n∈Z

(

1 − 2πiεqab
a
(

mξ0 + n
)) e2πiεqaba(mξ0+n)

(mξ0 + n)2
= −4π2

∑

q0∈Z

q0∆γ(z) e−2πiεmq0ξ0
,

where we introduced the step-function

∆γ(z) =

{

0 if ǫγℜzℑz > 0 ⇔ ǫγεε̃ = −1

ǫγ if ǫγℜzℑz < 0 ⇔ ǫγεε̃ = 1
(B.23)

and ε̃ = sign(ℑz). These relations can be obtained in the usual way by performing Poisson

resummation which boils down to the evaluation of continuous Fourier transform w.r.t. the

variable n. The latter is found by closing the integration contour in the upper (lower) half-

plane where the integrand is exponentially suppressed. Taking into account that m > 0, the

analysis of the pole-structure reveals that the integral is non-zero for ǫγεε̃ = 1 and vanishes

otherwise, which leads to the appearance of the step-function. In the sector qa = 0, a

similar resummation gives

∑

n∈Z

1

mξ0 + n
=
∑

n∈Z

mξ0

(mξ0)2 − n2
= 2πiε̃





∞
∑

q0=1

e−2πiε̃mq0ξ0
+ 1/2



 ,

∑

n∈Z

1

(mξ0 + n)2
=
∑

n∈Z

(mξ0)2 + n2

((mξ0)2 − n2)2
= −4π2

∞
∑

q0=1

q0 e−2πiε̃mq0ξ0
.

(B.24)

Substituting the identities (B.22), (B.24) into eqs. (B.20) and carrying out the sum-

mation over m explicitly then leads to our final result

T̃a =
ε

4π

∑

q0∈Z, qa≥0

n(0)
qa
qa∆γ(z) log

(

1 − e−2πiεqΛξΛ
)

,

T̃0 =
ε

4π

∑

q0∈Z, qa≥0

n(0)
qa
q0∆γ(z) log

(

1 − e−2πiεqΛξΛ
)

,

Tα = − i

8π2

∑

q0∈Z, qa≥0
γ 6=0

n(0)
qa

∆γ(z)Li2

(

e−2πiεqΛξΛ
)

− iεε̃

192
χX .

(B.25)

In the regions where the step-function ∆γ is constant, the T -contributions indeed depend

only on the twistor lines ξΛ in a holomorphic way. Moreover, it is straightforward to see

that, away from the discontinuities induced by ε and ε̃, T̃Λ = ∂ξΛTα, which is a necessary

requirement for the extra terms to constitute a gauge transformation.
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C SL(2,Z)-transformation of the Type IIB twistor lines

The key ingredient in the construction of the non-perturbative mirror map (5.1) is the fact

that the SL(2, Z)-transformation of the Type IIB twistor lines (5.3)–(5.5) is given by the

classical transformation law (3.13). In this appendix we provide the details underlying the

derivation of this result.

First, it is useful to decompose the transformation of τ = τ1 + iτ2, eq. (3.9), into its

real and imaginary part

τ2 7→ τ2
|cτ + d|2 , τ1 7→ ac|τ |2 + bd+ (ad+ bc)τ1

|cτ + d|2 . (C.1)

Moreover, using the notation zc,d
± introduced in (4.4), the transformation of z (3.14) can

be expressed as

z 7→ 1 + zc,d
− z

zc,d
− − z

= − zc,d
+ − z

1 + zc,d
+ z

, (C.2)

which implies

z−1 + z 7→ |cτ + d|
cξ0 + d

(

z−1 + z
)

, z−1 − z 7→ (cτ1 + d)
(

z−1 − z
)

− 2cτ2

cξ0 + d
. (C.3)

With regards to the transformation of the instanton-sums appearing in the twistor

lines, it is useful to introduce

(

m′

n′

)

=

(

a c

b d

)

(m

n

)

. (C.4)

Utilizing this notation, one then proves the transformation properties

Sm,n,qa 7→ Sm′,n′,qa , |mτ + n| 7→ |m′τ + n′|
|cτ + d| , (C.5)

which enter into all twistor lines. With these preliminary results, we are now in the position

to discuss the transformation of ξ̃a, ξ̃0, and αB in turn.

We start by considering ξ̃a. Noting that the second term appearing in (3.13) is already

generated by the classical piece in the first line of eq. (5.3), it follows that the instanton

contribution in the second line must be modular invariant. That this is indeed the case

readily follows from (C.5) together with the invariance of

1 + zm,n
+ z

z − zm,n
+

7→ 1 + zm′,n′

+ z

z − zm′,n′

+

. (C.6)

Concerning the transformation of ξ̃0, we first verify that the classical pieces given by the

first line of (5.4) satisfies the classical (3.13). Hence the transformation of the instanton

contributions given by the second and third line has to reproduce the instanton pieces
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originating from (cξ0 + d)ξ̃0 − c(αB − ξaξ̃a). This can be verified by applying the identities

mτ1 + n

|mτ + n|2 7→ d(m′τ1 + n′) + c(n′τ1 +m′|τ |2)
|m′τ + n′|2 , mξ0 + n 7→ m′ξ0 + n′

cξ0 + d
,

1 − zm,n
+ z

z − zm,n
+

ta 7→ (cτ1 + d)
1 − zm′,n′

+ z

z − zm′,n′

+

ta − c
z + zm′,n′

+

z − zm′,n′

+

τ2 t
a . (C.7)

Finally, following the same strategy as for ξ̃0, on verifies the transformation law of αB by

first establishing the intermediate result

(mτ1 + n)
(

z−1 − z
)

− 2mτ2 7→ (m′τ1 + n′)
(

z−1 − z
)

− 2m′τ2

cξ0 + d
. (C.8)

This completes the proof that the classical SL(2, Z) transformations (3.13) do not receive

quantum corrections from D(−1) and D1-brane instantons.
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